1 Data Analysis

1. We are given an item space X (the exact nature of the item is irrelevant for this problem). For an item $x \in X$ is also associated a numerical grade y, i.e., a real number. For simplicity, we assume $y \in Y$ where Y is a finite subset of the real numbers. Let $P(x, y)$ be a probability distribution over $X \times Y$. For a fixed n, and a set of items $X_n = \{x_1, \ldots, x_n\}$ with the corresponding numerical grades y_1, \ldots, y_n, a ranking or an ordering of X_n is simply a permutation $\sigma = (\sigma(1), \ldots, \sigma(n))$ of $(1, \ldots, n)$. For a given set of real numbers $c_1 > \ldots > c_n$, we use the following score to measure the quality of the ranking σ,

$$s(\sigma; \{(x_i, y_i)\}) = c_1 y_{\sigma(1)} + \ldots + c_n y_{\sigma(n)}.$$

- Show a ranking σ maximizes $s(\sigma)$ if

$$y_{\sigma(1)} > \ldots > y_{\sigma(n)},$$

i.e., we should order the items in X_n by the decreasing order of the y_i’s.

- Now assume $(x_i, y_i), i = 1, \ldots, n$ are iid from $P(x, y)$, show that

$$p(y_i|x_1, \ldots, x_n) = p(y_i|x_i),$$

i.e., the conditional probability of y_i given x_1, \ldots, x_n is the same as the conditional probability of y_i given x_i.

- A ranking function R is a mapping from X to the set of real numbers. We denote the ranking induced by R as σ_R, where σ_R is obtained by the decreasing order of $R(x_i), i = 1, \ldots, n$. For a ranking function R, define the expected score as

$$\mathcal{E}s(\sigma_R; \{(x_i, y_i)\})$$

where the expectation \mathcal{E} is with respect to the product probability, i.e., $(x_i, y_i), i = 1, \ldots, n$ are iid from $P(x, y)$. Show that the following ranking function

$$R^*(x) = \sum_y yP(y|x)$$

maximizes the expected score.

2. From the above Problem, we know R^* maximizes the expected score. We want to investigate whether the ranking (ordering) will change if we instead use

$$R_f^*(x) = \sum_y f(y)P(y|x)$$

as the ranking function, where f is a strictly monotonically increasing function.
(a) Show if \(f \) is linear, using \(R^*(x) \) and \(R^*_j(x) \) as the ranking functions produces the same ranking (ordering).

(b) Show if \(y \) can take exactly two distinct values, for an arbitrary \(f \) which is strictly monotonically increasing, using \(R^*(x) \) and \(R^*_j(x) \) as the ranking functions produces the same ranking (ordering).

(c) Show (b) is not true if \(y \) can take more than two distinct values.